Noise transfer

This is not the author's house!

This is not the author’s house!

We are privileged to have magnificent views of the river and mountains beyond from our city centre house.  However, the house was built before the motor car was invented when the loudest event outside might have been rowdy party-goers heading for home.  We still have some party-goers walking home under our bedroom window at night but most of them travel by noisy taxis.  I look forward to when the price of fossil fuels, or legislation will force taxis to become electric-powered.  In the meantime, we have been designing secondary glazing that will offer a high resistance to noise transmission and be in keeping with the early 19th century windows.  Noise is a form of energy transfer by vibrations, acoustic energy would be an alternative term for it, and so the combined resistance of the outside wall of my bedroom can be calculated using Kirchhoff’s law, as discussed for heat transfer in my last post [Born in a barn, 20th March, 2013].  In this case, the thin and badly-fitting but antique glass is the dominant component of both the heat and noise resistance.  We were happy to deal with the poor resistance to heat transfer by using plenty of bedclothes, i.e. adding a large resistance in series, but the same approach does not work with noise because earplugs are uncomfortable, fall out in your sleep and have a low resistance at the frequency of taxi-generated noise.  So, the solution is secondary glazing and the best performance is achieved using an acoustic laminate consisting of a polymer sandwiched between two sheets of glass which should be different thickness to avoid resonant effects.  Of course this will also improve the resistance to heat transfer which will be advantageous in winter, but perhaps not in summer…

Advertisements

3 comments

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s