Monthly Archives: June 2013

Disease of the modern age

hot flatThomas Friedman described ‘continuous partial attention’ as a disease of the modern age in his book ‘Hot, Flat and Crowded – Why we need a green revolution and how it can renew America’ [Farrar, Straus & Giroux, New York, 2008].  Most university students suffer from this disease, which makes it difficult for lecturers to attract and hold their attention.  An NSF-funded consortium of university engineering departments in the USA has developed a strategy based on using Everyday Examples of Engineering to engage students (for exemplars see http://www.engageengineering.org/?page=161 ).

A Biological Science Curriculum Study in the 1980s developed the concept of 5Es as a framework for lecture or lesson plans based on the earlier work of Atkin and Karplus [Atkin JM, & Karplus R, Discovery or invention? Science Teacher, 29(5):45, 1962].  The 5Es are: ENGAGE, EXPLORE, EXPLAIN, ELABORATE and EVALUATE.

I have edited a series of lesson plans which combine the 5Es framework and Everyday Examples of Engineering principles [see http://www.engineeringexamples.org ], which are intended to support lecturers who want to use these examples in their teaching.  The lesson plans describe how the engineering principles can be applied and explained as well as providing worked analyses of the examples.  The worked analyses will also be useful to students although full explanations of the underlying principles are not included because it is assumed that these are well-known to the lecturer.

In my post about ‘Bridging cultures’ on June 12th, 2013, I made a commitment to write a series of posts about Everyday Examples of Engineering concepts.  When they are relevant, I intend to attached 5E lesson plans to these posts.

To quote Samuel Johnson: “the two most engaging powers of an author are to make new things familiar, familiar things new”; I aspire to this and through the lesson plans help others to achieve it in the classroom.

Advertisements

Closed system on BBQ

sausagecloseupMy post of December 21st, 2012 on ‘Closed systems in nature?’ is my most popular  based on the statistics from WordPress.  These statistics led me to go back and read it again, which set me thinking along the same lines while tending the barbeque in our backyard.  A sausage is a nice example of a closed system with a boundary, or skin, that is impervious to mass or material moving across the boundary but which allows energy transfer in the form of heat.

Heat transfers into the system [sausage] through the boundary [skin] adjacent to the hot charcoal in my barbeque and heat transfers out on the opposite side.  Heat is simply energy transfer that occurs along a temperature gradient or across a temperature difference, from a higher to a lower temperature.

The temperature difference between the hot charcoal at about 375 degrees Centigrade and a sausage starting to cook at about 70 degrees is larger than the difference between the sausage and the air above it at say 35 degrees Centigrade, so more heat [energy] is transferred into than out of the sausage.  The difference between the energy in and out is used to heat and cook the sausage including starting to boil the water-content and trigger chemical reactions associated with cooking.  This is a manifestation of the first law of thermodynamics for the closed system, i.e. heat transfer in minus heat transfer out equals the change in the energy content of the system.  The net flux of heat into the sausage causes it to get hot and be cooked.

You can’t avoid thermodynamics, it gets involved in everything!