Getting smarter

A350 XWB passes Maximum Wing Bending test [from: http://www.airbus.com/galleries/photo-gallery%5D

Garbage in, garbage out (GIGO) is a perennial problem in computational simulations of engineering structures.  If the description of the geometry of the structure, the material behaviour, the loading conditions or the boundary conditions are incorrect (garbage in), then the simulation generates predictions that are wrong (garbage out), or least an unreliable representation of reality.  It is not easy to describe precisely the geometry, material, loading and environment of a complex structure, such as an aircraft or a powerstation; because, the complete description is either unavailable or too complicated.  Hence, modellers make assumptions about the unknown information and, or to simplify the description.  This means the predictions from the simulation have to be tested against reality in order to establish confidence in them – a process known as model validation [see my post entitled ‘Model validation‘ on September 18th, 2012].

It is good practice to design experiments specifically to generate data for model validation but it is expensive, especially when your structure is a huge passenger aircraft.  So naturally, you would like to extract as much information from each experiment as possible and to perform as few experiments as possible, whilst both ensuring predictions are reliable and providing confidence in them.  In other words, you have to be very smart about designing and conducting the experiments as well as performing the validation process.

Together with researchers at Empa in Zurich, the Industrial Systems Institute of the Athena Research Centre in Athens and Dantec Dynamics in Ulm, I am embarking on a new EU Horizon 2020 project to try and make us smarter about experiments and validation.  The project, known as MOTIVATE [Matrix Optimization for Testing by Interaction of Virtual and Test Environments (Grant Nr. 754660)], is funded through the Clean Sky 2 Joint Undertaking with Airbus acting as our topic manager to guide us towards an outcome that will be applicable in industry.  We held our kick-off meeting in Liverpool last week, which is why it is uppermost in my mind at the moment.  We have 36-months to get smarter on an industrial scale and demonstrate it in a full-scale test on an aircraft structure.  So, some sleepness nights ahead…

Bibliography:

ASME V&V 10-2006, Guide for verification & validation in computational solid mechanics, American Society of Mech. Engineers, New York, 2006.

European Committee for Standardisation (CEN), Validation of computational solid mechanics models, CEN Workshop Agreement, CWA 16799:2014 E.

Hack E & Lampeas G (Guest Editors) & Patterson EA (Editor), Special issue on advances in validation of computational mechanics models, J. Strain Analysis, 51 (1), 2016.

http://www.engineeringvalidation.org/

Advertisements

One comment

  1. I’m working on a model that should represent the surface of the earth. It looks simpel in the Model but there is no end in complications and strangs outcomes. Sometimes i just think forget it. System Earth is just way to complicated. Start playing with the moon till it works there and only then try again for mother Earth.

Leave a Reply

Fill in your details below or click an icon to log in:

WordPress.com Logo

You are commenting using your WordPress.com account. Log Out / Change )

Twitter picture

You are commenting using your Twitter account. Log Out / Change )

Facebook photo

You are commenting using your Facebook account. Log Out / Change )

Google+ photo

You are commenting using your Google+ account. Log Out / Change )

Connecting to %s