sustainability

Airborne urban mobility

Pop.Up_copyright Italdesign 2

At the Airbus PhD workshop that I attended a couple of weeks ago [see my post entitled Making Engineering Work for Society on September 13th 2017], Axel Flaig, Head of Airbus Research and Technology, gave us an excellent opening presentation describing their vision for the future.  Besides their vision for the next generation of passenger aircraft with reductions in CO2, NOx and noise emissions of 75%, 90% and 65% respectively against 2000 levels by 2050, they are also looking at urban air mobility.  We have 55 megacities [cities with a population of more than 10 million] and it is expected that this will increase to 93 by 2035 [see my post entitled ‘Hurrying Feet in Crowded Camps’ on August 16th, 2017].  These megacities are characterized by congestion and time-wasted moving around them; so, Airbus is working on designs for intra-city transport that takes us off the roads and into the air.  Perhaps the most exciting is the electric Pop.up concept that is being developed with Italdesign.  But, Airbus are beyond concepts: they have a demonstrator single-seater, self-pilot vehicle, the Vahana that will fly in 2017 and a multi-passenger demonstrator scheduled to fly in 2018.

Soon, we will have to look left, right and up before we cross the road, or maybe nobody will walk anywhere – though that would be bad news for creative thinking [see my post on ‘Gone Walking’ on 19th April 2017], amongst other things!

 

Image from http://www.airbus.com/newsroom/press-releases/en/2017/03/ITALDESIGN-AND-AIRBUS-UNVEIL-POPUP.html where there is also a video.

Advertisements

Making engineering work for society

Last week I attended a one-day workshop for PhD students sponsored by Airbus.  Most of the students produced a poster describing their research; and a dozen brave ones gave a three-minute presentation on their PhD thesis.  It’s a challenge to describe three years of research in three minutes to an audience that are not experts in your specialist field.  However, the result was an exciting and stimulating morning covering subjects as diverse as multidisciplinary design optimization and cognitive sources of ethical behaviour in business.  The latter was presented by Solenne Avet who was the only woman amongst the twelve three-minute thesis presenters.  The gender diversity was better for the other, longer talks with two women out of six presenters.  Interestingly, the female PhD students were the only ones tackling the interaction between engineering and human behaviour, including system-human communication, collective engineering work and innovation processes, which I have suggested is essential for viable engineering solutions to our global and societal challenges [see my post ‘Re-engineering engineering’ on August 30th, 2017].  This population sample is too small to make a reliable generalization; however, it suggests that a gender-balanced engineering profession would be more likely to succeed in making substantial contributions to our current challenges [see UN Global Issues Overview].

Image from https://members.architecture.com/custom/bespoke/directory/view_images.asp?id=257460&type=O&dir=1&CaseRef=140776&imgName=43535_100017586_1.jpg

In digital detox

I am on vacation so I am re-posting something I wrote around this time last year which I still think is relevant.

It’s official – half of us are addicted to our internet-connected devices and a third of us have attempted to kick the addiction.  A recent study by the UK’s communication regulator, OFCOM found that 59% of internet users considered themselves ‘hooked’ and spending the equivalent of more than a day a week on-line.   They also reported that one in three internet users have attempted a ‘digital detox’ with a third saying they felt more productive afterwards, while slightly more that a quarter found it liberating and another quarter said they enjoyed life more.  So, switch off all of your devices, take a deep vacation, do some off-line reading (see my post entitled ‘Reading offline‘ on March 19th, 2014), slow down and breathe your own air (see my post entitled ‘Slow down, breathe your own air‘ on December 23rd, 2015).  Now, you won’t find many blogs advising you to stop reading them!

Health warning: OFCOM also found that 16% of ‘digital detoxers’ experienced FOMO (Fear Of Missing Out’ (‘FOMO’), 15% felt lost and 14% ‘cut-off’.

No snow at Christmas?

img-20161210-wa0002

Norwegian Arctic (Image by Sarah)

The algae in the Arctic Ocean are blooming earlier every year at the moment because the sea ice melts more quickly each Spring as a consequence of global warming. This observation was made by Kevin Arrigo, a biological oceanographer at Stanford University and confirmed by Mati Kahru, an oceanographer at the University of California, San Diego using satellite imaging. But what’s good for algae is not good for polar bears or us because less ice deprives polar bears of a hunting platform and raises sea levels globally. A 1m rise in sea level would displace 145 million people, or the equivalent of about half the population of the USA. A 2 degree temperature rise would make the Earth as warm as 3 million years ago when sea levels were between 25m and 35m higher – the temperature in the Arctic in last month was 2.22°C above average for the time of year.  The extent of the sea ice in October was 28.5% less than average for the month. So while there will be snow at Christmas in the Arctic, there might not be in the future.

Our current engineering technology is both contributing to climate change and is inadequate to mitigate the consequences. These issues present a series of great opportunities disguised as insoluble problems (quoting John Gardiner), and given the predictions of the UN Intergovernmental Panel, we have less than 40 years to replace the equivalent of 200 years of engineering development (paraphrasing Yoshiyuki Sakaki). So, the generation of students entering engineering at the moment are going to be engaged in race that’s more challenging and more important to society than the race to the moon that preoccupied the generation that preceded mine.

Sources

Carl Zimmer, Global warming altering the Arctic food chain, Taipei Times, November 27th, 2016.

Blockstein DE, Weigman L, The Climate Solutions Consensus. Island Press, Washington, 2010.

John Gardiner, founder of Common Cause cited in Friedman, Thomas L., Hot, Flat and CrowdedWhy we need a green revolution and how it can renew America, Farrar, Straus & Giroux, New York, 2008.

Yoshiyuki Sakaki, President, Toyohashi University of Technology, Japan, Keynote presentation at ICEE/ICEER conference in Seoul, Korea, 25th August 2009.

Subtle balance of sustainable orderliness

129-2910_IMGI wrote this short essay a couple of weeks for another purpose and then changed my mind about using it.  So I thought I would share it on this blog.

Whenever we do something, some of our useful resource gets converted into productive activity but some is always lost in useless waste.  In other words, 100% efficiency is impossible – we can’t convert all of our resource into productive activity.  Engineers call this the second law of thermodynamics.  Thermodynamics is about energy transitions, for instance converting chemical energy in fossil fuels into electrical energy in a power station, and in these circumstances, the useless waste is called entropy.  At the time of the industrial revolution, Rudolf Clausius recognised that entropy can be related to the heat losses which occur whenever we do something useful, such as generating electricity in a power station, cleaning the house with an electric vacuum cleaner or running to catch the bus.

Clausius’s definition of entropy was really useful for designers of 19th century steam engines but it is difficult to use in other walks of life.  Fortunately Ludwig Boltzmann gave us a more valuable description.  He equated entropy to the number of states in which something could be arranged, or its lack of orderliness.  In other words, the more ways you can arrange something, the less ordered it is likely to be and the higher its entropy.  So a box of children’s building blocks has a low entropy when the blocks are packed in their box because there is a relatively small number of ways of arranging them to fit in the box.  When the box is emptied onto your living room floor, there are very many more possible arrangements and so the blocks have a high entropy.  The chance of knowing the whereabouts of a particular block is small. Whoops!  Now we’ve wondered into information theory.

Let’s get back to the second law, which using Boltzmann’s description of entropy, we can express as the level of orderliness should always decrease.  Stephen Hawking describes this as the arrow of time.  Because, if someone shows you a video clip in which steam gathers itself together and returns into a cup of coffee, or that box of children’s blocks repacks itself, then we know the video is being run backwards because these processes involve decreasing entropy and this can only happen spontaneously if we reverse the direction of time.  If this is true then why do we exist as highly ordered structures?

Erwin Schrödinger in his book, ‘What is Life’ says that organisms suck orderliness out of the environment in order to exist, so that the orderliness of the universe, that’s the organism and its environment, decreases.  Humans digest highly-ordered food to sustain life and food, in the form of plants, is brought into existence by metabolising energy from the sun and releasing entropy in the form of heat.  When we die these processes cease and the orderliness is sucked out of us to sustain insects, maggots and bacteria.

We are organisms, known as Sapiens, that organise ourselves into cultures and societies.  Organisation implies an increase in the level of orderliness in apparent contradiction of the second law.  So, we would expect to find a corresponding increase in disorder somewhere to counterbalance the order in society.  The more regimented society becomes the greater the requirement for counterbalancing disorder to occur somewhere in order to satisfy the second law, which might happen unexpectedly and explosively if the level of constraint or regulation is too great.  This is not an argument for anarchy or total deregulation, the financial sector has already demonstrated the risks associated with this path, but for an optimum and sustainable level of orderliness.  This requires subtle judgment just like in elegant engineering design and living a healthy life, both physically and psychologically.