brain

Wanted: user experience designers

A few weeks ago, I listened to a brilliant talk by Professor Rick Miller, President of Olin College.  He was talking at a conference on ‘New Approaches to Higher Education’.  He tolds us that the most common job description for recent Olin graduates was ‘user experience designer’ rather than a particular branch of engineering.  Aren’t all engineers, user experience designers?  We design, manufacture and maintain structures, machines, goods and services for society.  Whatever an engineer’s role in supplying society with the engineered environment around us, the ultimate deliverable is a user experience in the modern vernacular.

Rick Miller’s point was that society is changing faster than our education system.  He highlighted that the relevance of the knowledge economy had been destroyed by internet search engines.  There is no longer much advantage to be gained by having an enormous store of knowledge in your head, because much more is available on-demand via search engines, whose recall is faster than mine.  What matters is not what you know but what you can do with the knowledge.  And in the future, it will be all about what you can conceive or create with knowledge.  So, knowledge-intensive education should become a thing of the past and instead we need to focus on creative thinking and produce problem-solvers capable of dealing with complexity and uncertainty.

Listening with your eyes shut

I am in the London Underground onboard a train on my way to a conference on ‘New Approaches to Higher Education’ organised by the Institution of Engineering and Technology and the Engineering Professors’ Council.  The lady opposite has her eyes closed but she is not asleep because she opens them periodically as we come into stations to check whether it’s her stop.  I wonder if she is trying to reproduce John Hull’s experience of the depth of sounds as a blind person [see my post entitled ‘Rain brings out the contours in everything‘ on February 22, 2017].  For the second time in recent weeks, I close my eyes and try it for myself.  It is surprising how in a crowded train, I can’t hear anyone, just the noise made by the train.  It’s like a wobble board that’s joined by a whole percussion section of an orchestra when we go around a bend or over points.  The first time I closed my eyes was at a concert at the Philharmonic Hall in Liverpool.  My view of the orchestra was obstructed by the person in front of me so, rather than stare at the back of their head, I closed my eyes and allowed the music to dominate my mind.  Switching off the stream of images seemed to release more of my brain cells to register the depth and richness of Bach’s Harpsichord Concerto No. 5.  I was classified as tone deaf at school when I was kicked out of the choir and I learned no musical instruments, so the additional texture and dimensionality in the music was a revelation to me.

Back to the London Underground – many of my fellow passengers were plugged into their phones or tablets via their ears and eyes.  I wondered if any were following the MOOC on Understanding Super Structures that we launched recently.  Unlikely I know, but it’s a bit different, because it is mainly audio clips and not videos.  We’re trying to tap into some of the time many people spend with earbuds plugged into their ears but also make the MOOC more accessible in countries where internet access is mainly via mobile phones.  My recent experiences of listening with my eyes closed, make me realize that perhaps we should ask people to close their eyes when listening to our audio clips so that they can fully appreciate them.  If they are sitting on the train then that’s fine but not recommended if you are walking across campus or in town!

Walking through exams

As a student, in the run up to exams, I used to enjoy going out walking in the hills on my own.  This approach to exam preparation probably surprised my fellow students.  While other walkers that I came across probably thought I was mad because, in an age before mobile phones, they would see me talking to myself; because, as I walked, I was reciting material that I needed to learn for the next exam.  This technique worked for me but I have hesitated to recommend such behaviour to my students.  Now, I’ve discovered that psychologists have found that cognitive performance is improved in young adults while walking at a comfortable, relaxed speed.  This is probably connected to the neurogenesis that I wrote about in my post entitled ‘Gone walking’ on April 19th, 2017.

So, as the examination season is underway in many universities, I thought I should pass on my rather eccentric approach to exam revision.  No doubt, I’ll discover that I wasn’t so eccentric after all but none of us dared share such an unconventional approach to exam preparation.

Sources:

Schaefer et al, Cognitive performance is improved while walking: differences in cognitive-sensorimotor couplings between children and young adults, Euro J Developmental Psychology, 7:371-89, 2010.

Susan Greenfield, A Day in the Life of the Brain, London: Allen Lane, 2016.

Gone walking

Background and lock-screen pictures have become a feature of modern life.  Your computer and mobile device were probably delivered with some pre-loaded scenes from nature and some of us personalize our devices by up-loading photographs taken on holiday or a recent excursion into the countryside.  Perhaps, we do this intuitively, because recent research has shown that immersion in nature, even at the superficial level of viewing a picture can improve brain function.  Brisk walking stimulates the production of new neurons and, when you do it in an environment enriched with natural stimuli, the connectivity and stability of connectivity between neurons is increased.  For those us whose biological systems are in terminal decline, the opportunity to retard this decline by walking in the wild is too good to miss.  I have gone to the English Lake District to produce and connect some more neurons.  I’ll be back next week – feeling hopefully creative and empowered, as well as, probably rather damp but what else can be expected from northern England in April!

For those of you who want to immerse themselves vicariously in the damp natural environment of England in the rain could read ‘Rain: Four Walks in English Weather‘ by Melissa Harrison.

Sources:

Susan Greenfield, A Day in the Life of the Brain, London: Allen Lane, 2016.

Atchley RA, Strayer DL & Atchley, Creativity in the wild: improving creative reasoning through immersion in natural settings, PloS One, 7:e51474, 2012.

Yao S et al, Physical exercise-induced adult neurogenesis: a good strategy to prevent cognitive decline in neurodegenerative diseases? Biomedical Research Intl., 2014, 403120.

Olson KA et al, Environmental enrichment and voluntary exercise massively increase neurogenesis in the adult hippocampus via dissociable pathways, Hippocampus, 16:250-260, 2006.

Is the world incomprehensible?

For hundreds of years, philosophers and scientists have encouraged one another to keep their explanations of the natural world as simple as possible.  Ockham’s razor, attributed to the 14th century Franciscan friar, William of Ockham, is a well-established and much-cited philosophical principle that of two possible explanations, the simpler one is more likely to be correct.  More recently, Albert Einstein is supposed to have said: ‘everything should be made as simple as possible, but not simpler’.  I don’t think that William of Ockham and Albert Einstein were arguing that we should keep everything simple; but rather that we should not make scientific explanations more complicated than necessary.  However, do we have a strong preference for focusing on phenomena whose behaviour is sufficiently uncomplex that it can be explained by relatively simple theories and models?  In other words, to quote William Wimsatt, ‘we tend to ignore phenomena whose complexity exceeds the capability of our detection apparatus and explanatory models’.  Most of us find science hard; perhaps, this is not just about the language used by the cognoscenti to describe it [see my post on ‘Why is thermodynamics so hard?‘ on February 11th, 2015]; but, more about the complexity of the world around us.  To think about this level of complexity requires us to assemble and synchronize very large collections of neurons (100 million or more) in our brains, which is the very opposite of the repetitive formation of relatively small assemblies of neurons that Susan Greenfield has argued are associated with activities we find pleasurable [see my post entitled ‘Digital hive mind‘ on November 30th, 2016].  This might imply that thinking about complexity is not pleasurable for most us, or at least requires very significant effort, and that this explains the aesthetic appeal of simplicity.  However, as William Wimsatt has pointed out, ‘simplicity is not reflective of a metaphysical principle of nature’ but a constraint applied by us; and which, if we persist in its application, will render the world incomprehensible to us.

Sources:

William C. Wimsatt, Randomness and perceived randomness in evolutionary biology, Synthese, 43(2):287-329, 1980.

Susan Greenfield, A day in the life of the brain: the neuroscience of consciousness from dawn to dusk, Allen Lane, 2016.