cracks

Red to blue

Some research has a very long incubation time.  Last month, we published a short paper that describes the initial results of research that started just after I arrived in Liverpool in 2011.  There are various reasons for our slow progress, including our caution about the validity of the original idea and the challenges of working across discipline boundaries.  However, we were induced to rush to publication by the realization that others were catching up with us [see blog post and conference paper].  Our title does not give much away: ‘Characterisation of metal fatigue by optical second harmonic generation‘.

Second harmonic generation or frequency doubling occurs when photons interact with a non-linear material and are combined to produce new photons with twice the energy, and hence, twice the frequency and half the wavelength of the original photons.  Photons are discrete packets of energy that, in our case, are supplied in pulses of 2 picoseconds from a laser operating at a wavelength of 800 nanometres (nm).  The photons strike the surface, are reflected, and then collected in a spectrograph to allow us to evaluate the wavelength of the reflected photons.  We look for ones at 400 nm, i.e. a shift from red to blue.

The key finding of our research is that the second harmonic generation from material in the plastic zone ahead of a propagating fatigue crack is different to virgin material that has experienced no plastic deformation.  This is significant because the shape and size of the crack tip plastic zone determines the rate and direction of crack propagation; so, information about the plastic zone can be used to predict the life of a component.  At first sight, this capability appears similar to thermoelastic stress analysis that I have described in Instructive Update on October 4th, 2017; however, the significant potential advantage of second harmonic generation is that the component does not have to be subject to a cyclic load during the measurement, which implies we could study behaviour during a load cycle as well as conduct forensic investigations.  We have some work to do to realise this potential including developing an instrument for routine measurements in an engineering laboratory, rather than an optics lab.

Last week, I promised weekly links to posts on relevant Thermodynamics topics for students following my undergraduate module; so here are three: ‘Emergent properties‘, ‘Problem-solving in Thermodynamics‘, and ‘Running away from tigers‘.

 

Advertisements

Instructive Update

Six months ago I wrote about our EU research project, called INSTRUCTIVE, and the likely consequences of Brexit for research [see my post: ‘Instructive report and Brexit‘ on March 29th, 2017].  We seem to be no closer to knowing the repercussions of Brexit on research in the UK and EU – a quarter of EU funding allocated to universities goes to UK universities so the potential impacts will hit both the UK and EU.  Some researchers take every opportunity to highlight these risks and the economic benefits of EU research; for instance the previous EU research programme, Framework Programme 7, is estimated to have created 900,000 jobs in Europe and increased GDP by about 1% in perpetuity.  However, most researchers are quietly getting on with their research and hoping that our political leaders will eventually arrive at a solution that safeguards our prosperity and security.  Our INSTRUCTIVE team is no exception to this approach.  We are about half-way through our project and delivered our first public presentation of our work at the International Conference on Advances in Experimental Mechanics last month.  We described how we are able to identify cracks in metallic structures before they are long enough to be visible to the naked eye, or any other inspection technique commonly used for aircraft structures.  We identify the cracks using an infra-red camera by detecting the energy released during the formation and accumulation of dislocations in the atomic structure that coalesce into voids and eventually into cracks [see my post entitled ‘Alan Arnold Griffith‘ on April 26th, 2017 for more on energy release during crack formation].  We can identify cracks at sub-millimetre lengths and then track them as they propagate through a structure.  At the moment, we are quantifying our ability to detect cracks forming underneath the heads of fasteners [see picture] and other features in real aerospace structures; so that we can move our technology out of the laboratory and into an industrial environment.  We have a big chunk of airplane sitting in the laboratory that we will use for future tests – more on that in later blog posts!

INSTRUCTIVE is an EU Horizon 2020 project funded under the Clean Sky 2 programme [project no. 686777] and involves Strain Solutions Ltd and the University of Liverpool working with Airbus.

Statistics on funding from http://russellgroup.ac.uk/news/horizon-2020-latest-statistics/and https://www.russellgroup.ac.uk/media/5068/24horizon-2020-the-contribution-of-russell-group-universities-june-201.pdf

For other posts on similar research topics, see ‘Counting photons to measure stress‘ on November 18th, 2015 and ‘Forensic engineering‘ on July 22nd, 2015.

Alan Arnold Griffith

Everest of fracture surface [By Kaspar Kallip (CC BY-SA 4.0), via Wikimedia Commons]

Some of you maybe aware that I hold the AA Griffith Chair of Structural Materials and Mechanics at the University of Liverpool.  I feel that some comment on this blog about Griffith’s seminal work is long overdue and so I am correcting that this week.  I wrote this piece for a step in week 4 of a five-week MOOC on Understanding Super Structures which will start on May 22nd, 2017.

Alan Arnold Griffith was a pioneer in fracture mechanics who studied mechanical engineering at the University of Liverpool at the beginning of the last century.  He earned a Bachelor’s degree, a Master’s degree and a PhD before moving to work for the Royal Aircraft Establishment, Farnborough in 1915.

He is famous for his study of failure in materials.  He observed that there were microscopic cracks or flaws in materials that concentrated the stress.  And he postulated that these cracks were the source of failure in a material.  He used strain energy concepts to analyse the circumstances in which a crack or flaw would propagate and cause failure of a component.  In order to break open a material, we need to separate adjacent atoms from one another, and break the bonds between them.  This requires a steady supply of energy to do the work required to separate one pair of atoms after another and break their bonds.  It’s a bit like unpicking a seam to let out your trousers when you’ve put on some weight.  You have to unpick each stitch and if you stop working the seam stays half undone.  In a material with a stress raiser or concentration, then the concentration is quite good at delivering stress and strain to the local area to separate atoms and break bonds.  This is fine when external work is being applied to the material so that there is a constant supply of new energy that can be used to break bonds.  But what about, if the supply of external energy dries up, then can the crack continue to grow?  Griffith concluded that in certain circumstances it could continue to grow.

He arrived at this conclusion by postulating that the energy required to propagate the crack was the work of fracture per unit length of crack, that’s the work needed to separate two atoms and break their bond.  Since atoms are usually distributed uniformly in a material, this energy requirement increases linearly with the length of the crack.  However, as the crack grows the material in its wake can no longer sustain any load because the free surface formed by the crack cannot react against a load to satisfy Newton’s Law.  The material in the wake of the crack relaxes, and gives up strain energy [see my post entitled ‘Slow down time to think (about strain energy)‘ on March 8th, 2017], which can be used to break more bonds at the crack tip.  Griffith postulated that the material in the wake of the crack tip would look like the wake from a ship, in other words it would be triangular, and so the strain energy released would proportional to area of the wake, which in turn would be related to the crack length squared.

So, for a short crack, the energy requirement to extend the crack exceeds the strain energy released in its wake and the crack will be stable and stationary; but there is a critical crack length, at which the energy release is greater than the energy requirements, and the crack will grow spontaneously and rapidly leading to very sudden failure.

While I have followed James Gordon’s lucid explanation of Griffith’s theory and used a two-dimensional approach, Griffith actually did it in three-dimensions, using some challenging mathematics, and arrived at an expression for the critical length of crack. However, the conclusion is the same, that the critical length is related to the ratio of the work required for new surfaces and the stored strain energy released as the crack advances.  Griffith demonstrated his theory for glass and then others quickly demonstrated that it could be applied to a range of materials.

For instance, rubber can absorb a lot of strain energy and has a low work of fracture, so the critical crack length for spontaneous failure is very low, which is why balloons go pop when you stick a pin in them.  Nowadays, tyre blowouts are relatively rare because the rubber in a tyre is reinforced with steel cords that increase the work required to create new surfaces – it’s harder to separate the rubber because it’s held together by the cords.

By the way, James Gordon’s explanation of Griffith’s theory of fracture, which I mentioned, can be found in his seminal book: ‘Structures, or Why Things Don’t Fall Down’ published by Penguin Books Ltd in 1978.  The original work was published in the Proceedings of the Royal Society as ‘The Phenomena of Rupture and Flow in Solids’ by AA Griffith, February 26, 1920.

Forensic engineering

Picture1The picture above shows the fracture surface of a thin bar of aluminium alloy that had a circular hole through the middle, like the peep-hole in a front door. The photograph was taken in a Scanning Electron Microscope (SEM) at x160 magnification. There is a scale bar in the bottom right corner showing a length of 100 microns. We are looking approximately in the longitudinal direction, which was the direction of loading, and across the photograph from left to right corresponds to the direction you would look through the hole. The lower one third of the picture shows the machined surface of the hole cut or machined by the drill. The top two-thirds shows the surface created by the fatigue crack as it extended incrementally with each cycle of load. The crack started from edge of the machined surface approximately on the vertical centre-line of the picture. I can tell this because all of the features in the texture of the fracture surface point towards this point because the failure radiated out from this location. The picture below shows the crack initiation area at x1000 magnification. It is a small area at interface with hole above the letters ‘SS40’ in the top photograph; this should be enough to let you identify the common features but the interpretation of these images requires significant skill.

Fractography is the forensic study of failure surfaces such as this to establish the cause of failure. In this example, the hole in aluminium bar ensured that it will always fail with cyclic loading through the growth of a crack from somewhere around the hole. The textured form of the fracture surface occurs because the material is not homogeneous at this scale but made up of small grains. The failure of each grain is influenced by its orientation to the loading which results in the multi-faceted surface in the photographs.

I made the photographs the focus of this post because I thought they are interesting, but may be that’s because I’m an engineer, and because they are a tiny part in a fundamental research programme on which I have been spending a significant portion of my time. A goal of programme is to understand how to use these materials to build more energy-efficient structures that are cheaper and last longer without failing by, for example, fatigue.

More details:

The bar was 1.6mm thick and 38mm wide in the transverse direction and made from 2024-T3 Aluminium alloy. The hole diameter was 6.36mm. A tension load was repeatedly applied and removed in the longitudinal direction which caused the initiation and growth of a fatigue crack from the hole that after many cycles of loading led to the bar breaking in half along a plane perpendicular to the load direction. The pictures were taken at the University of Plymouth by Khurram Amjad with the assistance of Peter Bond and Roy Moate using a JEOL JSM-6610LV.

x1000