creativity

Walking through exams

As a student, in the run up to exams, I used to enjoy going out walking in the hills on my own.  This approach to exam preparation probably surprised my fellow students.  While other walkers that I came across probably thought I was mad because, in an age before mobile phones, they would see me talking to myself; because, as I walked, I was reciting material that I needed to learn for the next exam.  This technique worked for me but I have hesitated to recommend such behaviour to my students.  Now, I’ve discovered that psychologists have found that cognitive performance is improved in young adults while walking at a comfortable, relaxed speed.  This is probably connected to the neurogenesis that I wrote about in my post entitled ‘Gone walking’ on April 19th, 2017.

So, as the examination season is underway in many universities, I thought I should pass on my rather eccentric approach to exam revision.  No doubt, I’ll discover that I wasn’t so eccentric after all but none of us dared share such an unconventional approach to exam preparation.

Sources:

Schaefer et al, Cognitive performance is improved while walking: differences in cognitive-sensorimotor couplings between children and young adults, Euro J Developmental Psychology, 7:371-89, 2010.

Susan Greenfield, A Day in the Life of the Brain, London: Allen Lane, 2016.

Illusion of self

A few weeks ago, I wrote that some neuroscientists believe consciousness arises from the synchronous firing of assemblies of neurons [see my post ‘Digital hive mind‘ on November 30th, 2016].  Since these assemblies exist for only a fraction of a second before triggering other ones that replace them, this implies that what you think of as ‘yourself’ is actually a continuously changing collection of connected neurons in your brain, or as VS Ramachandran has described it ‘what drives us is not a self – but a hodgepodge of processes inside the skull’.

According to Kegan’s schema of cognitive development, new born babies perceive the world as an extension of themselves.  However, as our consciousness develops, the idea of a ‘self’ evolves as a construct of the brain that allows us to handle the huge flow of sensory inputs arriving from our five senses and we begin to separate ‘self’ from the objects around us.  This leads to us perceiving the world around us as separate to us but there to serve our needs, which we see as paramount.  Fortunately, the vast majority of us (more than 90%) move beyond this state and our relationships with other people become the dominant driver of our actions and identity.  Some people (about 35%) can separate their relationships and identity from ‘self’ and hence are capable of more nuanced decision-making – this is known as the Institutional stage. About one percent of the population are capable holding many identities and handling the paradoxes that arise from deconstructing the ‘self’ in the Inter-individual stage.

Of course, Kegan’s stages of cognitive development are also a construct to helps us describe and understand the behaviour and levels of cognition observed in those around us.  There is some evidence that deeper more complex thought processes, associated with higher levels of cognition, involve the firing of larger, more widespread assemblies of neurons across the brain; and perhaps these larger neuronal assemblies are self-reinforcing; in other words, the more we think deeply the more capable we are of thinking deeply and, just occasionally, this leads to an original thought.  And, maybe the one percent of individuals who are capable of handling paradoxical thoughts have brains capable of sustaining multiple large neuronal assemblies.  A little bit like lightning triggered from multiple points in the sky during a (brain)storm.

How does this relate to engineering?  Well, we touch on Kegan’s stages of cognitive development in our continuing professional development courses [see my post on ‘Technology Leadership’ on January 18th, 2017] for engineers and scientists aspiring to become leaders in research and development because we want to advance their cognitive development and, also allow them to lead teams consisting of individuals at the institutional and inter-individual stages that will be capable of making major breakthroughs.

Sources:

V.S. Ramachandran, ‘In the hall of illusions’, in ‘We are all stardust‘ by Stefan Klein, London: Scribe, 2015.

Kegan, R., In over our heads: the mental demands of modern life, Cambridge, MA: Harvard University Press, 1994.

Kegan, R., The evolving self: problem and process in human development, Cambridge, MA: Harvard University Press, 1982.

Happenstance, not engineering?

okemos-art-2extract

A few weeks ago I wrote that ‘engineering is all about ingenuity‘ [post on September 14th, 2016] and pointed out that while some engineers are involved in designing, manufacturing and maintaining engines, most of us are not.  So, besides being ingenious, what do the rest of us do?  Well, most of us contribute in some way to the conception, building and sustaining of networks.  Communication networks, food supply networks, power networks, transport networks, networks of coastal defences, networks of oil rigs, refineries and service stations, or networks of mines, smelting works and factories that make everything from bicycles to xylophones.  The list is endless in our highly networked society.  A network is a group of interconnected things or people.  And, engineers are responsible for all of the nodes in our networks of things and for just about all the connections in our networks of both things and people.

Engineers have been constructing networks by building nodes and connecting them for thousands of years, for instance the ancient Mesopotamians were building aqueducts to connect their towns with distance water supplies more than four millenia ago.

Engineered networks are so ubiquitous that no one notices them until something goes wrong, which means engineers tend to get blamed more than praised.  But apparently that is the fault of the ultimate network: the human brain.  Recent research has shown that blame and praise are assigned by different mechanisms in the brain and that blame can be assigned by every location in the brain responsible for emotion whereas praise comes only from a single location responsible for logical thought.  So, we blame more frequently than we praise and we tend to assume that bad things are deliberate while good things are happenstance.  So reliable networks are happenstance rather than good engineering in the eyes of most people!

Sources:

Ngo L, Kelly M, Coutlee CG, Carter RM , Sinnott-Armstrong W & Huettel SA, Two distinct moral mechanisms for ascribing and denying intentionality, Scientific Reports, 5:17390, 2015.

Bruek H, Human brains are wired to blame rather than to praise, Fortune, December 4th 2015.

 

Science fiction becomes virtual reality

vecI have a new print in my office. It’s called ‘Small Science Fiction Self-Portrait’ and is by Maria Lassnig (1919-2014) [see: http://www.painters-table.com/link/contemporary-art-daily/maria-lassnig]. I am disappointed to admit that I had never heard of her until I went to a special exhibition at the Tate Liverpool a few weeks ago, which featured her work and that of Francis Bacon. I was expecting the works by Bacon to be the main attraction but instead I thought Lassnig ‘stole the show’. Nearly all of her paintings in the exhibition were self-portraits in which she attempts to represent on canvas her ‘body sensation’ or ‘body awareness’. This seems to echo the synaesthesia pursued by Georgia O’Keeffe when she represented her feelings from various senses in her paintings [see my post entitled ‘Engineering Synaesthesia‘ on September 21st, 2016].  Two of Lassnig’s paintings resonanted with me: one, which was on the front of the programme, called Lady with Brain was painted in 1991 and shows the head of a lady with a proportion of her brain outside of her skull – not in a damaged way but as if it had grown there. This reminded me of the ideas on our increasing use of out-of-skull memory and processing power in our mobile devices that I wrote about under the heading ‘Thinking out of Skull’ [see my post of that title on March 18th, 2015]. The second is the print in my office, painted in 1995, that shows the artist wearing a virtual reality headset that looks almost identical to those we use in our Virtual Engineering Centre. I was amazed by Lassnig’s vision.

Art and engineering

Windows of the Soul II [3D video art installation: http://www.haigallery.com/sonia-falcone/]

Windows of the Soul II [3D video art installation: http://www.haigallery.com/sonia-falcone/%5D

A couple of weeks ago I wrote about the meaning of the words ‘engineer’ and ‘engineering’ [see my post entitled ‘Engineering is all about ingenuity‘ on September 14th, 2016] .  And it was clear that most engineers are involved in some sort of creative activity.  One of the common skills that unites the many different types of engineering is creative problem-solving.  But in that case how are engineers different from artists who are also involved in creative acts?  David Blockley summarises it succinctly as engineers produce something useful and artists produce something extraordinary.  Of course, very occasionally we manage to do both and an artist-engineer produces something extraordinary that is also useful.  I say ‘very occasionally’ because extraordinary implies it is exceptional, which eliminates mass-produced artifacts. It is difficult to identify modern creations that fit this description – the Large Hadron Collider is an extraordinary piece of engineering but is it art?  It is a product of the application of human skill and imagination, which is another definition of art.  Or the Solar Impulse – the solar powered plane that flew around the world?

On the other hand, when we visit art galleries we can buy prints and postcards that are copies of the artworks displayed in the gallery. Is the mass-produced, but iconic, engineering artifact equivalent to an art print? Perhaps the original has to be rather less transitory than the latest model of phone or car.  The advent of computer-aided engineering and rapid prototyping means that the original often only exists in virtual space, which is more equivalent to the video installations that are becoming more commonplace in galleries, such as Sonia Falcone’s ‘Best Video Installation Art at the Biennale in Santa Cruz Bolivia‘.