innovation

Blinded by the light

It has become a habit during our summer vacation to read the novels short-listed for Bailey’s Women’s Prize for Fiction.  Unusually this year, we were not only unanimous in our choice of the best novel but we also agreed with the judges and selected the ‘The Power‘ by Naomi Alderman.  In another of the books, Do Not Say We Have Nothing by Madeleine Thien, a Chinese composer called Sparrow thinks ‘about the quality of sunshine, that is, how daylight wipes away the stars and planets, making them invisible to human eyes, might daylight be a form of blindness? Could it be that sound was also be a form of deafness? If so, what was silence?’.  I felt some resonance between these thoughts and John Hull’s writings on blindness and my earlier blog posting on ‘Listening with your eyes shut‘ [on May 31st, 2017].  In our everyday life, we are bombarded with sounds from people living around us, from traffic and from devices in our homes and places of work.  We rarely experience silence; however, when we do, perhaps on holiday staying in a remote rural location, then a whole new set of sounds becomes apparent: waves breaking on the shore in the distance, the field mouse rooting around under the floorboards, or the noises of cattle enjoying the lush grass in the field next door.  Okay, so you have to be in the right place to hear these sounds of nature but you also need silence otherwise you are deaf to them, as Sparrow suggests.

The same is true for knowledge and understanding because our minds have finite capacity [see my post entitled ‘Silence is golden‘ on January 14th, 2014].  When you are bombarded with information and data it is easy to become overwhelmed and unable to structure the information in way that makes it useful or meaningful.  In our connected society, information has become like white noise, or daylight obscuring the stars and planets.  Information is blinding us to knowledge and understanding.  We need to aggressively filter the information flow in order to gain insight and knowledge.  We should switch off the digital devices, which bombard us with information constantly, to leave our minds free for conceptual and creative thinking because that’s one of the few tasks in which we can outperform the smartest machine [see my post entitled ‘Smart machines‘ on February 26th, 2014].

In a similar vein see: ‘Ideas from a balanced mind‘ on August 24th, 2016 and ‘Thinking out-of-the-skull‘ on March 18th, 2015.

Wanted: user experience designers

A few weeks ago, I listened to a brilliant talk by Professor Rick Miller, President of Olin College.  He was talking at a conference on ‘New Approaches to Higher Education’.  He tolds us that the most common job description for recent Olin graduates was ‘user experience designer’ rather than a particular branch of engineering.  Aren’t all engineers, user experience designers?  We design, manufacture and maintain structures, machines, goods and services for society.  Whatever an engineer’s role in supplying society with the engineered environment around us, the ultimate deliverable is a user experience in the modern vernacular.

Rick Miller’s point was that society is changing faster than our education system.  He highlighted that the relevance of the knowledge economy had been destroyed by internet search engines.  There is no longer much advantage to be gained by having an enormous store of knowledge in your head, because much more is available on-demand via search engines, whose recall is faster than mine.  What matters is not what you know but what you can do with the knowledge.  And in the future, it will be all about what you can conceive or create with knowledge.  So, knowledge-intensive education should become a thing of the past and instead we need to focus on creative thinking and produce problem-solvers capable of dealing with complexity and uncertainty.

Getting smarter

A350 XWB passes Maximum Wing Bending test [from: http://www.airbus.com/galleries/photo-gallery%5D

Garbage in, garbage out (GIGO) is a perennial problem in computational simulations of engineering structures.  If the description of the geometry of the structure, the material behaviour, the loading conditions or the boundary conditions are incorrect (garbage in), then the simulation generates predictions that are wrong (garbage out), or least an unreliable representation of reality.  It is not easy to describe precisely the geometry, material, loading and environment of a complex structure, such as an aircraft or a powerstation; because, the complete description is either unavailable or too complicated.  Hence, modellers make assumptions about the unknown information and, or to simplify the description.  This means the predictions from the simulation have to be tested against reality in order to establish confidence in them – a process known as model validation [see my post entitled ‘Model validation‘ on September 18th, 2012].

It is good practice to design experiments specifically to generate data for model validation but it is expensive, especially when your structure is a huge passenger aircraft.  So naturally, you would like to extract as much information from each experiment as possible and to perform as few experiments as possible, whilst both ensuring predictions are reliable and providing confidence in them.  In other words, you have to be very smart about designing and conducting the experiments as well as performing the validation process.

Together with researchers at Empa in Zurich, the Industrial Systems Institute of the Athena Research Centre in Athens and Dantec Dynamics in Ulm, I am embarking on a new EU Horizon 2020 project to try and make us smarter about experiments and validation.  The project, known as MOTIVATE [Matrix Optimization for Testing by Interaction of Virtual and Test Environments (Grant Nr. 754660)], is funded through the Clean Sky 2 Joint Undertaking with Airbus acting as our topic manager to guide us towards an outcome that will be applicable in industry.  We held our kick-off meeting in Liverpool last week, which is why it is uppermost in my mind at the moment.  We have 36-months to get smarter on an industrial scale and demonstrate it in a full-scale test on an aircraft structure.  So, some sleepness nights ahead…

Bibliography:

ASME V&V 10-2006, Guide for verification & validation in computational solid mechanics, American Society of Mech. Engineers, New York, 2006.

European Committee for Standardisation (CEN), Validation of computational solid mechanics models, CEN Workshop Agreement, CWA 16799:2014 E.

Hack E & Lampeas G (Guest Editors) & Patterson EA (Editor), Special issue on advances in validation of computational mechanics models, J. Strain Analysis, 51 (1), 2016.

http://www.engineeringvalidation.org/

We are all citizens of the world

A longer post this week because I was invited to write an article for the Citizens of Everywhere project being organised by the Centre for New and International Writing at the University of Liverpool. The article is reproduced below:

Scientists seek to discover and describe knowledge, while engineers seek to apply and deploy the same knowledge by creating technology that supports our global society.  In their quests, both scientists and engineers are dependent on each other and on those that have gone before them.  On each other, because scientists increasingly need technology in order make discoveries, and because engineers need new scientific discoveries to drive innovation; and both groups stand on the shoulders of their predecessors, to mis-quote Isaac Newton who said he was able to see further by standing on the shoulders of his predecessors.  Scientists and engineers have to build on the achievements of their predecessors, otherwise nothing would be achieved in a single lifetime.  This process is enabled by the global dissemination of knowledge and understanding in our society, which does not recognise any boundaries and flows around the world largely unimpeded by the efforts of nation states and private corporations.  As Poincaré is reputed to have said ‘the scientist does not study nature because it is useful; he studies it because he delights in it, and he delights in it because it is beautiful’.  The feeling of delight is a reward for hours of intense study; but, the realization that you are the first to recognise or discover a new scientific fact generates so much excitement that you want to tell everyone.  Scientists have always met to share their findings and discuss the implications.  As a young researcher, I had a postcard above my desk showing a photograph of the attendees at the 5th Solvay Conference in 1927 at which 29 scientists from around the world met to debate the latest discoveries relating to electrons and photons.  Seventeen of the 29 attendees at this conference went on to receive Nobel prizes.  Not all scientific meetings are as famous, or perhaps as significant, as the Solvay conference; but, today they are happening all around the world involving thousands of researchers from scores of countries.  Besides the bureaucratic burden of obtaining visas, national boundaries have little impact on these exchanges of scientific and technological knowledge and understanding.  If you are a researcher working in the subject with sufficient funding then you can attend; and if your work is sufficiently novel, rigorous and significant, as judged by your peers, then you can present it at one of these meetings.  You can also listen to the world’s leading experts in the field, have a discussion over a coffee, or even a meal, with them before going back to your laboratory or office and attempting to add to society’s knowledge and understanding.  Most scientists and engineers work as part of a global community contributing to, and exploiting, a shared knowledge and understanding of natural and manufactured phenomena; and in this process, as global citizens, we are relatively unaware and uninfluenced by the national boundaries drawn and fought over by politicians and leaders.  Of course, I have described a utopian world to which reality does not conform, because in practice corporations attempt to protect their intellectual property for profit and national governments to classify information in the national interests and sometimes restrict the movement of scientists and technologist to and from states considered to be not playing by the right set of rules.  However, on the timescale of scientific discovery, these actions are relatively short-term and rarely totally effective.  Perhaps this is because the delight in the beauty of discovery overcomes these obstacles, or because the benefits of altruistic sharing outweigh the selfish gain from restrictive practices.  (Of course, the scientific community has its charlatans, fraudsters and free-loaders; but, these counterfeiters tend to operate on a global stage so that even their fake science impacts on the world-wide community of scientists and engineers.)  Participation in this global exchange of ideas and information makes many of us feel part of a world-wide community, or citizens of the world, who are enfranchised by our contributions and interactions with other citizens and international organisations.  Of course, along with everyone else, we are also inhabitants of the world; and these two actions, namely enfranchisement and inhabiting, are key characteristics of a citizen, as defined by the Shorter Oxford English Dictionary.  Theresa May in her speech last October, at the Conservative party conference said: ‘If you believe you’re a citizen of the world, you’re a citizen of nowhere.’  If she is right, then she rendered many scientists and engineers as aliens; however, I don’t think she is, because citizenship of the world does not exclude us from also being citizens of other, local communities; even though politicians may want to redraw the boundaries of these communities and larger unions to which they belong.  However, in practice, it is hard to avoid the fact that we are all inhabitants of planet Earth and have a responsibility for ensuring that it remains habitable for our grand-children and great-grandchildren; so, we are all citizens of the world with its associated responsibilities.

When I was a student, thirty years ago, James Lovelock published his famous book, ‘Gaia’ in which he postulated that the world was a unified living system with feedback control that preserved its own stability but not necessarily the conditions for the survival of the human race.  More recently, Max Tegmark, in his book ‘Our Mathematical Universe’, has used the analogy of spaceship Earth stocked with large but limited supplies of water, food and fuel, and equipped with both an atmospheric shield and a magnetic field to protect us from life-threatening ultra-violet and cosmic rays, respectively.  Our spaceship has no captain; and we spend next to nothing on maintenance such as avoiding onboard explosions, overheating, ultra-violet shield deterioration or premature depletion of supplies.  Lovelock and Tegmark are part of a movement away from a reductionist approach to science that has dominated since Descartes and Newton, and towards systems thinking, in which it is recognised that the whole is more than the sum of the parts.  It’s hard for most of us to adopt this new thinking, because our education was configured around dividing everything into its smallest constituent parts in order to analyse and understand their function; but, this approach often misses, or even destroys, the emergent behaviour of the complex system – it’s like trying to understand the functioning of the brain by physically dissecting it.  Recently reported statements about citizens of the world and about climate change, suggest that some world leaders and politicians find it easier, or more convenient, to use reductionism to ignore or deny the potential for complex systems, such as our global society and planet Earth, to exhibit emergent behaviour.

Thomas L. Friedmann in his book, ‘The World is Flat’ warned that ‘every young American would be wise to think of themselves competing against every young Chinese, Indian or Brazilian’.  He was right; we cannot turn back the globalisation of knowledge.  The hunger for knowledge and understanding is shared by all and courses provided over the internet are democratizing knowledge to an unprecedented level.  For instance, I recently taught a course on undergraduate thermodynamics – not normally a popular subject; but, it was made available globally as a massive open on-line course (MOOC) and taken by thousands of learners in more than 130 countries.  The citizens of the world are becoming empowered by knowledge and simultaneously more networked.  Large complex networks are systems that exhibit emergent behaviour, which tends to be unexpected and surprising, especially if you only consider their constituents.

 

Instructive report and Brexit

Even though this blog is read in more than 100 countries, surely nobody can be unaware of the furore about Brexit – the UK Government’s plan to leave the European Union.  The European Commission has been funding my research for more than twenty years and I am a frequent visitor to their Joint Research Centre in Ispra, Italy.  During the last decade, I have led consortia of industry, national labs and universities that rejoice in names such as SPOTS, VANESSA and, most recently MOTIVATE.  These are acronyms based loosely on the title of the research project.  Currently, there is no sign that these pan-European research programmes will exclude scientists and engineers from the UK, but then the process of leaving the EU has not yet started, so who knows…

At the moment, I am working with a small UK company, Strain Solutions Ltd, on a EU project called INSTRUCTIVE.  I said these were loose acronyms and this one is very loose: Infrared STRUctural monitoring of Cracks using Thermoelastic analysis in production enVironmEnts.  We are working with Airbus in France, Germany, Spain and the UK to transition a technology from the laboratory to the industrial test environment.  Airbus conducts full-scale fatigue tests on airframe structures to ensure that they have the appropriate life-cycle performance and the INSTRUCTIVE project will deliver a new tool for monitoring the development of damage, in the form of cracks, during these tests.  The technology is thermoelastic stress analysis, which is well-established as a laboratory-based technique [1] for structural analysis [2], fracture mechanics [3] and damage mechanics [4], that I described in a post on November 18th, 2015 [see ‘Counting photons to measure stress’].  It’s exciting to be evolving it into an industrial technique but also to be looking at the potential to apply it using cheap infrared cameras instead of the current laboratory instruments that cost tens of thousands of any currency.  It’s a three-year project and we’ve just completed our first year so we should finish before any Brexit consequences!  Anyway, the image gives you a taster and I plan to share more results with you shortly…

BTW – You might get the impression from my recent posts that teaching MOOCs [see ‘Slowing down time to think [about strain energy]’ on March 8th, 2017] and leadership [see ‘Inspirational leadership’ on March 22nd, 2018] were foremost amongst my activities.  I only write about my research occasionally.  This would not be an accurate impression because the majority of my working life is spent supervising and writing about research.  Perhaps, it’s because I spend so much time writing about research in my ‘day job’ that last year I only blogged about it three times on: digital twins [see ‘Can you trust your digital twin?’ on November 23rd, 2016], model credibility [see ‘Credibility is in the Eye of the Beholder’ on April 20th, 2016] and model validation [see Models as fables on March 16th, 2016].  This list gives another false impression – that my research is focussed on digital modelling and simulation.  It is just the trendiest part of my research activity.  So, I thought that I should correct this imbalance with some INSTRUCTIVE posts.

References:

[1] Greene, R.J., Patterson, E.A., Rowlands, R.E., 2008, ‘Thermoelastic stress analysis’, in Handbook of Experimental Mechanics edited by W.N. Sharpe Jr., Springer, New York.

[2] Rowlands, R.E., Patterson, E.A., 2008, ‘Determining principal stresses thermoelastically’, J. Strain Analysis, 43(6):519-527.

[3] Diaz, F.A., Patterson, E.A., Yates, J.R., 2009, ‘Assessment of effective stress intensity factors using thermoelastic stress analysis’, J. Strain Analysis, 44 (7), 621-632.

[4] Fruehmann RK, Dulieu-Barton JM, Quinn S, Thermoelastic stress and damage analysis using transient loading, Experimental Mechanics, 50:1075-1086, 2010.